Using Machine Learning Techniques to Support Group Formation in an Online Collaborative Learning Environment
نویسنده
چکیده
The current Learning Management Systems used in e-learning lack intelligent mechanisms which can be used by an instructor to group learners during an online group task based on the learners‟ collaboration competence level. In this paper, we discuss a novel approach for grouping students in an online learning group task based on individual learners‟ collaboration competence level. We demonstrate how it can be applied in a Learning Management System such as Moodle using forum data. To create the collaboration competence levels, two machine learning algorithms for clustering namely Skmeans and Expectation Maximization (EM) were applied to cluster data and generate clusters based on learner‟s collaboration competence. We develop an intelligent grouping algorithm which utilizes these machine learning generated clusters to form heterogeneous groups. These groups are automatically made available to the instructor who can proceed to assign them to group tasks. This approach has the advantage of dynamically changing the group membership based on learners‟ collaboration competence level.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDesigning collaborative learning model in online learning environments
Introduction: Most online learning environments are challenging for the design of collaborative learning activities to achieve high-level learning skills. Therefore, the purpose of this study was to design and validate a model for collaborative learning in online learning environments. Methods: The research method used in this study was a mixed method, including qualitative content analysis and...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل